Search results for "Technological application"
showing 4 items of 4 documents
Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications
2011
In recent years, there has been an increasing interest in identifying and characterizing the yeast populations associated with diverse types of table olive elaborations because of the many desirable technological properties of these microorganisms. In this work, a total of 199 yeast isolates were directly obtained from industrial green table olive fermentations and genetically identified by means of a RFLP analysis of the 5.8S-ITS region and sequencing of the D1/D2 domains of the 26S rDNA gene. Candida diddensiae, Saccharomyces cerevisiae and Pichia membranifaciens were the most abundant yeast species isolated from directly brined Aloreña olives, while for Gordal and Manzanilla cultivars th…
Selective adsorption of oppositely charged PNIPAAM on halloysite surfaces: a route to thermo-responsive nanocarriers.
2018
Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of th…
Cooling of a superconductor by quasiparticle tunneling
1999
We have extended the cryogenic cooling method based on tunneling between a superconductor and another metal to the case when both metals are superconducting but when their energy gaps are different; earlier, this method was applied between a superconductor and a normal metal. The electron system of a titanium strip with the superconducting transition temperature Tc2=0.51 K has been cooled from 1.02Tc2 to below 0.7Tc2 by this method, using aluminum as the other superconductor.